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SUMMARY

n analysis of film condensation on a vertical fluted tube has been made

considering gravitational and surface tension effects over the entire fluted

surface, and using surface-oriented coordinates. For the first time surface

tension effects are determined, as they should, from the shape of the

condensate-vapor interface rather than the shape of the flute.

Two-dimensional conduction within the condensate film as well as in the fluted

tube is considered. A finite-difference solution of the highly non-linear

partial differeni .al equation for the film thickness is coupled with a

finite-element solution of the conduction problem. The procedure has been

tested on a sinusoidal flute with amplitude to pitch ratio V40 .2. A linear

extrapolation, on a log-log basis, of our results shows good comparison with

experimental data
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1. INTRODUCTION

The U.S. Navy has a continued interest in the reduction of the size arnd

weight of propulsion components aboard both surface vessels and submarines.

Some studies are currently underway in the Navy to determine the savings in

both weight and volume which can occur if the condenser is designed to use

corrugated or indented tubing to enhance heat transfer on both the shell and

- tube sides. While a comprehensive research program has been underway at the

* Naval Postgraduate School to study various enhancement techniques for

horizontal condenser tubes 11,21, an attractive alternative aboard submarines

is a vertical condenser oriented aft of the steam turbine as shown in Figure

* 1(a). With this arrangement, there would be a shorter machinery stack length

compared to a horitontal condenser mounted underneath the turbine. This would

allow a smaller diameter submarine to be built at a significant reduction in

- cost. The ultimate aim of this project is therefore to assess the reduction

in condenser weight and size that may be feasible if the vertical tubes in

* this condenser are fluted on the outside (i.e., the steam side), Figure 1(b).

Many methods [31 for enhancing condensation heat transfer have been

* proposed. Among them, Gregorig 141 first recognized the importance of surface

* tension in film condensation on vertical fluted tubes. Thereafter, many

* experimental studies 15-111 on vertical fluted surfaces were made to confirm

* his findings. Lustenader, et al., 15i employed a fluted vertical tube and

* obtained about four times larger heat transfer coefficients than those on a

* vertical smooth tube. Carnavos 161 carried out experiments on a doubly fluted

vertical tube and found the augmentation ratio of condensation heat transfer



rate to be about six. Thomas [7,81 tested a vertical tube with longitudinal.

I rectangular fins and wires. The augmentation ratio was about eight. Newson

and Hodgson [91 manufactured various condenser tubes of highly enhanced heat

transfer performance. Combs and his co-workers rio, 111 at Oak Ridge Nation~al

I Laboratory found the augmentation ratio to be around five for condensation of

a onia and refrigerants on. vertical fluted tubes.

Gregorig's theoretical model has also been improved upon but xmu~ch still

Iremains to be done. Edwards, et al., [121 proposed a condensation model on a

heat transfer surface of triangular fins on the assumption of liquid film

attaching to the tip of fin with a contact angle. The effect of a locally

L thin condensate film on the side of, the fin (Figure 2) was not considered by

them as well as by Fujii and Honda [131. The latter, however, did consider

* two-dimensional conduction within the condensate film in the trough region

I (Figure 2) and within the fin wall. Moi, et al., [141 considered the effect

*of a thin condensate-film on the side of the fin but neglected the variation

*of its thickness in the vertical direction. They also considered only

one-dimensional conduction within the fin and neglected any conduction within-

the condensate film in the trough region. Hirasawa, et al., (151 improved

*upon [141 in that they included the variation of a thin condensate film in the

- vertical direction but neglected conduction within the fin and the film

completely. Panchal and Bell [16, 171 also neglected conduction within the

fin and the film while analysing a sinusoidal fluted tube, but later found

that two-dimensional conduction is important within the fin and the film for a

triangular fin [181. A recent empirical analysis by Barnes and Rohsenow [19],

* based largely on [16, 201, reports an augmentation ratio of about fifteen for

* condensation of steam on a fluted surface while most earlier studies



considered condensation of a refrigerant and found imuch smaller augmentation

ratios. With present day knowledge, it is difficult to ascertain whether this

discrepancy is due to different fluids or due to a questionable analysis.

All theoretical analyses discussed above break up the fluted surface into

basically two parts. In the portion near the crest, gravity is neglected in

comparison to the surface tension effect, while in the portion near the

trough, the reverse is done. The patching between the two regions is carried

out at a point that is selected quite arbitrarily at times [15-181. This

isolation of the two important effects, gravity and surface tension, is

justified on the basis that the condensate film is thick in the trough region

- and thin over the crest. This is, however, not true over the initial portion
L

* of the tube length in the vertical direction nor during the initial portion of

* the tube just below a condensate drainage skirt (Figure 1(b)). These initial

portions may be a few pitches in length. A recent analysis by Stack and

*Merkle 1211 does attempt to solve the complete equation with both

-gravitational and surface tension effects included over the entire flute but

has three major drawbacks.* First, when the condensate film in the trough

*region has thickened, the analysis treats it in the boundar-layer-sense, that

is, it neglects all velocity gradients except those in the direction normal to

p' the fluted surface. Second, the analysis is restricted to impracticably low

values of amplitude to pitch ratio of the flute (0.02 and 0.04) owing to the

use of a Cartesian coordinate system rather than a surface-oriented coordinate

system. Third, the analysis does not consider any heat transfer effects.

* Their analysis is only confined to finding the condensate-vapor interface.

- Fujii and Honda [131 also considered the entire thin film as one piece over an

I initial length of the tube (about 1/8 of the pitch) but neglected the

important surface tension effect. *



A major deficiency of all the above theoretical analyses except 121] lies

in the way surface tension effect is determined. Contrary to the general

p belief, this effect does not depend upon the curvature of the condensate-vapor

interface. Instead it depends upon the variation of this curvature along the

interface. However, since the location of this interface is unknown a priori,

many analyses [12, 131 simply determine it on the basis of the known flute

shape owing to the argument that in the crest region where the surface tension

effect is important, the film is very thin. Such analyses cannot be applied-

at all to triangular or rectangular fins since their curvature as well as the

variation of curvature along the flute is zero. The same is, however, not

true for the condensate-vapor interface. Even for sinusoidal flutes, there

are large differences between the curvature and its variation along the curved

surface for the given flute and the actual interface (see Fig. 10 and its

discussion in Section 5). Moreover those analyses that do claim to determine

the surface tension effect based on the actual shape of the condensate-vapor

interface are also questionable in their claim as shown in Appendix A.

Another problem with all earlier theoretical analyses except 1131 is that

conduction within the condensate film and the tube wall is either completely

neglected or considered to be at most one-dimensional. Panchal and Bell [181

point out clearly that two-dimensional conduction should be considered within

both the condensate film and the tube wall.

In an attempt to take care of these deficiencies, an analysis has been

S developed during this study that solves the complete equation with

gravitational as well as surface tension effects included over the entire

fluted surface using the surface-oriented coordinate system. In addition, for .-

the first time, surface tension effects are determined as they should, from

.dW



the actual shape of the condensate-vapor interface rather than the shape of

the flute. Two-dimensional conduction within the condensate film as well as "

the fluted tube is also included. A finite-difference solution of the highly

non-linear partial differential equation for the condensate film thickness is

coupled with a finite-element solution of the conduction problem. Details of

the analysis follow in subsequent sections.

S :...
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2. ANALYSIS

Considering the condensate as a viscous, incompressible Newtonian fluid,

and setting up a curvilinear orthogonal coordinate system (x, x2, z) as shown

in Fig. 3, the continuity equation yields [221

Bu .R u1  + ax2 + u2  + a = 0 , (2.1)
R +x ax ax R + x2 1 2 2

where (ul, u2, w) are the velocity components in the (xi, x2, z) directions

respectively, and R(xI) is the radius of curvature of the fluted tube. The

momentum equations are (cf. Ref. 22, p. 68)

xj-direction:

R aul + u1  aul UlU2 IR-u 1  u2  - + - + - + -R+ 2  2 ax ax2  a z R+x p R+x2 axI

TH 2 1l 1 2

2 R2  a2U + 2 U + ul 1 Ul Ul(R
22 2 2 R+x ax 2

(R+x2) ax a 3x 2az 2 2 Rx2

Lx22d 1 2""'2

Du Rx au12R 2 R dR 2 dR 1 ,
+(R+x 2 )a 1  - (R+x 2)3 7u + (R+x2) 1 1 22

L7.

8 "
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x2-direction:

R u2  + u2  3u2  u ! _ -
R. U u - + w - 1 + 2 *"

RR 2Uax 2 2  a2u R2u2  Ia pu

22

= 2 + u2 3x, + x + P 1 2
2a2z 2 2

u2  2R au 1 R dR Rx2 dR u2

2x + + 2 +R 2 (2.3)
(R+x)2  (R+x2) 1 (R+x2)3 dx1 + x a

z-(vertica.l) direction: I.

R aw aw aw + 1 v "
R + x2 U a U - + -1 -2 i -1- g

2 1 2 2paz

___ a w 3 W W2 d a + 1 a,

V + Tg (2.4,)

(R+x2 a 2 x 2 +z2 (R+x2)3 dx, xJ R+X2

2 1 2 22.2

where p and v are the density and kinematic viscosity of the condensate, p is

the pressure in the condensate film, g is the acceleration due to gravity, and

Pv is the density of the vapor.

In order to simplify these equations, we make the usual assumptions that .

inertia terms are negligible compared to other terms, and that 8/ax 2 >> 8/ax i

9
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or 3/3z, and u2 << u 1 or w. This simplifies the momentum equations (2.2) -

(2.4) to

2
U, 1 R _2

2 _ Rz 2  3x '(2.5)

2 1

00
a (2.6)

3x2

2
I (- P ) (2.7)

where u (=pv) is the dynamic viscosity of the condensate. Integration of

(2.7) with boundary conditions _

wOat x. 0

(2.8)

ji = S3  atx 2  =

2

yields

83 2 ~w =- x 2  + . (P - p,) x2  26- ±- (2.9)

10
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Here S is the (known) shear stress (in z-direction) on the condensate-vapor
3

interface, and 6(xl,z) is the condensate film thickness. Similarly,

integration of (2.5) with boundary conditions

U 0 at x 2 = 0" :

(2.10)
au1  *Sl S at x2  a "
x2

yieldsm

SI 2 Rdp x2 in + R n - x2  (2.11)
X P 2 + dx\ 2'+ R 21 .-

Here S1 is the (known) shear stress (in x -direction) on the condensate-vapor

interface.

It is advantageous to use the integral form of the continuity equation

rather than the differential form (eqn. (2.1)). We therefore consider the

* control volume of Fig. 4, and write the continuity equation as

ku dx- + f (2 ) (
I 2 -phfg (.2

x-; .-"

where kf is the thermal conductivity of the fluid, and hfg is the latent heat

of vaporization. The right side of eqn. (2.12) represents the rate at which

condensation of vapor takes place. The temperature gradient aT/ ax2 can be

16,L_

2o°, ° o •
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approximated by (Ts - Tw)/8, where Ts is the saturation temperature at which

condensation takes place, and TV (x1 ,z) is the wall temperature at x2 = 0.

This approximation basically assumes one-dimensional conduction in the

condensate film but since a/ax 2 >> a/ax or a/az, and we are interested only

in (aT/ax ) at present, it is justifiable to make this approximation.

Substituting for w and u' from eqns. (2.9) and (2.11) into eqn. (2.12),

and integrating, we get

x + a Rx d[ I  - R6 + -

2U ax 2V3x1  ~ ax1  dxl 7

__ 2 62 as a 3 kf (Ts-T)-

san _ Ua t

The pressure p can be related to the surface tension a and radius of curvature

Ri of the condensate vapor interface by

p = p5 ± 0/Ri , (2.14)

where ps is the saturation pressure of the vapor. The positive sign holds for

0 ' x1  xp/2, and the negative sign for xp/2 4 x1 4 Xp, where xp is the

length (curve DE in Fig. 3) along the fluted surface (in x -direction) from

the crest to the trough (over half the pitch). We are basically interested in

analyzing flute shapes that are symmetric about the crest and trough, and

therefore take advantage of the symmetry by considering only half of the flute

pitch.

12
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Assuming a to be constant, the pressure gradient may be calculated from

eqn. (2.14).' -

x ." d(°" (2.15) .

d-x.dx..R

It is thus the variation of curvature of the condensate-vapor interface that

is of significance, not the curvature itself. In general, this can be quite

different from d(l/R)/dxl, a fact neglected by many previous analyses.

Relations for finding d(l/Ri)/dx1 are given in Appendix A.

Equation (2.13) is a partial differential equation for the condensate .

film thickness S(x ,z). It requires the prior knowledge of shear stresses S-

and S3 that come from vapor dynamics and of Tw (x ,z) that comes from heat

conduction analysis for the fluted tube and condensate film. Eqn. (2.13) .

involves only first order derivatives w.r.t. z but fourth-order derivatives

w.r.t. xI owing to the presence of dp/dx1 (cf. eqn. (2.15) and (A-15) or

(A-18)). For flute shapes that are synetric about the crest and trough, the

boundary conditions for the solution of eqn. (2.13) are

36 a3 aL "--
-0x._ = Oat x= 0, and at xI  X for all z; (2.16a)

(x1 ,o) = 0.

While the boundary condition at z = 0 is correct, it is not practical to start

the integration of eqn. (2.13) from z = 0. Therefore, following Stack and

Merkle 1211, we replace the boundary condition at z = 0 by

6(x 1 Zo) = a0 (2.16b)

13
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where a0 is the f ilm thickness at the initial station z ,and is found by the

classical two-dimensional Nusselt solution

= 1/ (2.17)

Here Twdo = Tw (0,z 0 ) mTw (0,0).

For rxn-dimensionalization, we take the length L of the vertical fluted

tube in the z-direction and length xp and 6y as the characteristic lengths in

the x,, and X2 -directions respectively. Here S.. is related to L by the

classical Nusselt relation (2.17) in exactly the same manner as a0 is related

to z. 'Ihus, we let

A=6/6 , X/ Z z/L .(2.18)

Y l/p

With this rxon-dimensionalization, eqn. (2.13) and bo~undary oonditions (2.16)

can be written as

3 2 2 E 3
+ -D + E + E - + _ + 2 (2.19)az laX 1 -x 3 z-a 5z

a3
= -~ = 0 at X=,1 for all Z, (2.20a)ax

1/4
A(XZ ) (2.0b0 0 22b

where

14
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g(p-P x 62

T T
D wD2 T -

E 2 ~(P-P )x P

3S3

O=R C[Rc /2 + 3D A2/4 (RA + R&M Iln(1+D/ )F

D 3 =6Y/XP

F=±d ( \ -for 0 -C X c 1/2

hn ~ \~j + for 1/2 4 X 1

=n Ri/xp

EtjAotion, (2.19) is a highly non-linear partial differential equation. It

is slved numerically by the finite-difference technique as detailed below.

15



3. FINITE-DIFFERENCE METHOD

Equation (2.19) is parabolic in Z so that a forward marching scheme in

the Z-direction can be used. Thus the choice of 6 will affect only the
0

region near z0 , and its effect will die out as z increases. This was indeed -

found to be true. Equation (2.19) as written is in conservative form. An

equivalent but non-conservative form can be obtained by expanding the

derivatives in (2.19) and dividing by 3A2. In that non-conservative form, the

equation is still parabolic in Z but the mass is not identically conserved

when the equation is integrated numerically [211.

We divide the interval 0 4 X 4 1 into n equal parts. Taking 6X and aZ as

the step sizes in X and Z-directions respectively, and using backward

differencing in Z and mixed differencing in X-direction, we write the

finite-difference form of eqn. (2.19) as

~ -A-
3i 3 i,k-Q + (1-28)Q -(l-$)Q

i~ k1+ D1  i+l,k i,k i-l,k
( Z) * D1 ( X)

2 +-2) 2  2

$A i~~ ( ~-(l-$)A 2Ll 2~ ~-
+ El ~(6X) Z

2 + 113  3D2+ i,k + = (3.1)
i,k

16
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S

where the subscripts i and k represent the location in X and Z directions

respectively (cf. Fig. 5), and B is a number that is selected between 0 and 1;

B = 0 corresponds to backward differencing, B = 1 to forward differencing, and S

0 = 1/2 to central differencing in X. Since eqn. (2.20b) gives A's for all X

(i.e., for all i) at Z0 (say k = 1), we can march forward in the Z-direction.

In other words, A's at (k-i) for all i are known in eqn. (3.1). Thus (3.1)

leads to a tridiagonal set of non-linear algebraic equations to be solved for

(n+l) values of A's at each location k of forward march in the Z-direction.

This non-linear set is solved by linearization and successive iteration. Let

us write eqn. (3.1) in the form

Ai(Ai..lk)m + Bi(Aik) m  + Ci(&i+lk)t  = 32

where ( )m represents the values at the (current) mth iteration, and the

coefficients Ai, Bj, Ci, and Rj depend upon the method of linearization.

For linearization three methods were tried. In the first method, we

simply let

m M-1
S(A k) ( = (3.3)

where ( )- represents the known values at the (previous) (m-l)th iteration.

The iteration is started by taking Ai,k = Ai,kl for all i. With this

linearization the coefficients in eqn. (3.2) are

17



S=- (i-$)[D (Gi ) - 1 + El _ i,2,...,(-i) (3.14a)

I TY~ E _1k)i 3~

B1=(Aikm ~ [(~)- 1 + E3+ 8Z a.x- az~)k

+ a (1-20) Di 'i,k + El (Ai,k) , I = O,....,n (3.,b)

C = 8 [D 1 (Gi+,k - + E1 A m-1 1,2,...,(n-1) (3.4c)

L 3 2 3D2(SZ)-- R A ,k I +  E3 + "
ik-= 3 i,k-I +( I , i = 0,i,...,n (3.hd)4 ,i,k)...

,A = -A n -l D Gnlkm1 + E1 (1-28) (Anl,k)m - 1  (3.4e)

61 Jk~n-1I

C z D,(G I-1 E %(1-20) ( 1 (3.4f)
o a kD 1,k l- 13

where

2

c/2 + 3DI/4 2 D A in 1 + D3 A/R) F = / (3.hg)

p3

18
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and the boundary conditions in (2.20a) have been taken into account. This

method works but has two drawbacks. Its convergence is slow, and it requires

heavy under-relaxation for convergence. The latter implies that it is

necessary to under-relax the values of A after every iteration according to

(A) m = (A)m- l + &)m - (A)m-l] (3-5)*

where the relaxation factor X < 1. In fact, it was found that X decreases

from about 0.5 at Z to very small values as Z increases. Typically X < 0.1

for Z > 0.02.

In the second method, we used Taylor series expansion in order to

linearize terms containing A2 and A3. Thus we let

m-1 m m-1
A3(i) - 2 (2,k) 3 (3.6a)

and

(2  m m-1 m m-I

.k) . (A,,k) Ai~) - (,.k) . (3.6b)

With this linearization the coefficients in eqn. (3.2) are

Ai - (8)D i=l,2,...,(n-) (3a)

* This equation is to be treated in the context of an equivalent FORTRAN
statement.

19
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r (3E, 3E1
M~r- ,-1 11 3)

Bi 'i~k V( +2 3 a 2(6) i,k

6Z~ (1-20.) [Dl( Gir . +1 2 E( --l~1 ,1.., (3.Tb)

c. aZ FD, (G, + 2 E )r 1 1,2....(n-1) (37Tc)6x L k+ ,)m I2 i+i,k m

+E3D (SZ) rn-1

32 2 2
i ,k-1 3 i,k-1 M- +,k) k

M11 rn-1

[$( +~ [D (1-2 ) +2 1 (-8 A~, n.](.

= Tx- [~i~k () Gl) 1  
1 (-2)( ,k)1 37*

20



+E302 + 3D2 (6Z) (2 2 m-i
0 R A 0,k-I + E3 A0,k-1 + .4- El1 (1-2 ( ,k( O,k) -1-

1-1
1(k [ 2 (&Ok)m.- l + El TL .l-20) + E3 + z 'E + 3 o,kJ'

23D 2(SZ) -
R =A3 + E A2 + 2 E Z (1 -2 a) (-I

n n,k-1 3 n,k-1 4 n- -- M- 11 (- n-

2kl [2 ((1-2$) 7hL ( ,k)m-l + E (-28) + E3 + SZ - az n,kJ

where G is again given by (3.4g) and the boundary conditions in (2.20a) have

been accounted for.

It is of interest to note from eqns. (3.7) that the Taylor series

expansion was not used to linearize the right side of eqn. (3.1) as well as

the terms involving Q on the left side of (3.1). While such a linearization

of the right side of (3.1) can be carried out without much difficulty, it was

not found to be beneficial. The unnecessary complication was therefore

avoided. The Taylor series linearization of terms involving Q in (3.1) was

also tried but was found not to work at all. This method was found to be the

best of the three. It allows a larger step size (6Z) in the Z-direction, and
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a larger relaxation factor X than the first method. Overall, it is better

than the first method by a factor of at least twenty, and was therefore

adopted. The third method consisted in the use of Newton-Raphson method for

* solution of the non-linear equations. A general outline of this method is

given in Appendix B. Though this method does not require any relaxation

factor, it produced absurd results (A's oscilling with X after a few step

sizes in the Z-direction), and was therefore abandoned.
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4. COMPUTATIONAL DETAILS

Before the set of equations (3.2) resulting from eqn.(3.1) can be solved,

we need to specify values of the dimensionless parameters E,, E3 and D This

requires the prior knowledge of shear stresses S and S and the temperature

Tw(x i , z) of the condensate-wall interface. The computer code does have the

provision for specification of shear stresses SI and S3 but for the present .-

results both these stresses were set to zero. This is because vapor dynamics

that determines these stresses is beyond the scope of the present work. The

computer code, however, does calculate Tw(x1 ,Z) by considering two-dimensional

conduction within the fluted tube as well as the condensate film. For this,

the Laplace equation

k2T2T a2  = 0 (4.i)
'ax2 ay2 /

is solved subject to the boundary conditions

T = 0 at x =0, P/2 where P = pitch of the flute,

T = Ts at the vapor-condensate interface, (4.2)

and T = Tc at the coolant-tube interface,

where k is the thermal conductivity, and Tc is the coolant temperature assumed

to vary linearly from the coolant inlet to exit temperature. The last

boundary condition in (4.2) needs modification due to a film resistance on the

coolant side but such a specification either requires an ad-hoc value of the

film resistance or a consideration of coolant dynamics that was also

considered beyond the scope of the present analysis. Solution of eqns. (4.1)

and (4.2) was obtained by a finite element method in which the region OABCO
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(Fig.3) was divided into several linear triangular elements. Details for this

can be found in any text on the finite element method. Some care is, however,

required since the thermal conductivity of the fluid in region ABEDA is vastly

" different from that of the tube material in region DECOD (Fig.3). The finite

element method was preferred over the finite-difference method owing to the

irregular shape of surface AB (Fig. 3). From this solution, we get the values

of Tw(X1 ,z) on the surface DE (Fig.3).

Since the solution of eqn. (3.1) requires Tw(x1 ,z) which comes from the

solution of (4.1) for which knowledge of 6-values is essential (for locating

surface AB in Fig.3), the two solutions are coupled. Also, since the solution

of (3.1) is found iteratively, it implies that eqn.(4.l) should be solved at

every iteration. This places a rather prohibitive demand on the computer

time. However, since (6Z) is small, of the order of 10- 5, changes in 6 are

small at every iteration with the result that it is not really necessary to

solve equation (4.1) at every iteration. Thus (4.1) was solved only once per

step in the Z-direction. This saves considerable computer time since the

finite element solution of (4.1) requires almost as much computer time as

nearly one hundred iterations for solution of (3.1). Some sample runs were

initially made to confirm that the error in 6-values due to this time saving

feature was really negligible.

4.1 Condensate-Vapor Interface Profile

As pointed out in Appendix A, one method for finding d(l/Ri)/dx1 is by

use of equation (A.8) which involves derivatives of fi(x), where fi(x)

describes the condensate-vapor interface at any Z. Several methods were used

- to find these derivatives but none of them proved worthwhile since fi(x) is

*' known at unequally-spaced values of x. The methods are listed below for the

sake of completeness.
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i) Cubic splines were fitted in a least squares manner through fi values

to find fi' and fi". Then cubic splines were fitted through the previously

computed fi' values to find fi'. A slight variation of this method was to

fit cubic splines repeatedly through fi, fi' and fi" values to find fi'

Both these methods gave different values for fi" and fi'' pointing to their
S

futility.

ii) Parabolas were fitted through three consecutive points in succession

on the condensate-vapor interface, and Ri and d(I/Ri)/dx1 were computed at the 1

point central to each set of three points. This also led to inconsistent

results.

iii) An attempt to fit a truncated Fourier series (having 3-4 terms)

through fi values was made. This was attempted since we were working with a

sinusoidal flute. However, since the fit itself was poor, no attempt was made

to calculate the derivatives. A better fit (Fig. 6) was obtained by fitting

(a + a cos 2wx/P) through all (n+l) values of fj, where the coefficients a

and a2 were found for a least squares fit. However, even this fit was

considered inadequate to find d(l/Ri)/dx A slight variation of this was to

fit (a + a2 cos 2wx/P) through the first n/2 values of fj (for x < P/2) and a1 2

similar curve through the last n/2 values. This produced a very good fit on

visual inspection (Fig.7). However, using it to find d(l/Ri)/dx1 leads to

wiggles in 6-values. Solution of equations (3.1) and (4.1) starting from Zo

leads to film shape rising suddenly in the trough region (Fig.8) after a few

(6Z) steps, thus violating the boundary conditions there. Starting from

Z = 0.07, with results at Z = 0.07 found by better methods, the solution leads

to such large wiggles that even negative values of 6 are found only a few

steps downstream. In an effort to improve upon this situation, values of 6

were computed to correspond to the fit in Fig. 7 before iterating. This,
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however, slowed down the convergence so much that even two hundred iterations

were insufficient for the same tolerance. In fact, it appeared as if

convergence would never take place. Nevertheless, this exercise did point out

the reason for the failure of the above technique, since the differences

between the original 6-values and those conforming to the good (!) fit in

Fig. T were found to be large, as much as 20%.

iv) Efforts to use lagrangian interpolation to compute fi values at iJ

equi-distant x values, and then use techniques described in Section 4.2 to 4

find fj', etc. also produced absurd results. Use of equation (A.8) to

compute d(I/Ri)/dx was therefore abandoned.

It may be mentioned that while using eqn. (1.8) to find

d(l/Ri)/dxl, a futile attempt was also made to solve the partial differential

equation (2.13) directly in terms of 63 rather than 6.

4.2 Derivatives of Condensate Film Thickness

Use of either eqn. (A.15) or (A.18) to find d(l/Ri)/dx1 requires the

determination of first three derivatives of 6 w.r.t. x1. Fortunately 6 is

known at equidistant values of x1 . It is therefore easier to find these der-

ivatives than those of fi w.r.t. x. Several methods for this determination

were also tried with varying degrees of success.

i) Derivatives of delta were found by fitting a cosine to the vapor-

condensate interface in a manner analogous to that described in Sec. 4.1, but

it resulted in absolutely useless results.

ii) Another fruitless effort was to fit least squares cubic splines,

repeatedly or otherwise, through 6-values so as to find 6', 6" and 6"'.
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*iii) The first derivative of 8 w.r.t. xwas found by solving the following

set of linear equations 123, P.561:

+ 46, +~j 66 -6 ~ 1 , i =,(n1

(14.3)

61=0 ,6 =0 ,x 6x (a),
0 nfl

and the second derivative, 6", by solving

6" + 106 +6" = 12 (8 26 + 6 il2..(-)
i-i i i+l ( 6 1 2i1 i i+3j'

" 12

56+5 8 (44

"n-i n (6 1)
2 (n-i n
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Though these sets of linear equations are tridiagonal and can be solved

easily, they do represent an increase in computer time. Besides the method

*. yields rather poor results.

iv) A method that gives better results than those obtained by above

methods is based on passing least squares quartics through seven consecutive

points at a time. Leaving the details to the reader (see also 1241, p.492),
•! I, fit

" we present the equations for finding 6i, 6i and 6
i  for i = o, 1,..., n.

These equations make use of the boundary conditions (2.16a), and the fact that

6 is known at equidistant xI values.

Relations for 6', accurate tol0(ax )4, are

= ( 1-3- 67612- 58 6iI- + 586 +I+ 676i2- 226i+3 / 2526x

!i =

6 =0 , 6 =0,0 n

=1 (-5860- 6781+ 806 2 + 676 3 -2284)/ 2526x,

(4-5)

* - ~2 = -6760 3661+ 5863 + 6768 228~) 2526x1  45

2 3 4 5)/

Sn-2 = 226 - 6704 - 586 3 + 36 6n 1 + 676n/ 2526xl , .

and

6 n1 (226n4 - 67n3 - 80an2 + 67n_ + 586 n) 2526x I

-28-
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- Relations for 6", accurate to 0(ax 1 )4, are

6= 361- 6T6.1-2- 19861-1 TO 6 1 96 * + + 6T6i+ 1 36~/ 132 6x2]*

* s" (-2663 131462 38 - 706.)/1l326xl

(-3+ -322- 36 1 8) 1326x1

(367663 192 )/

326 + 67602 (14.6)a2 (-13 65+ 67614 1963 7062 2t+ 61~ 132 Sx1

6-2 -~ 65+ 67 9 f- 0 n-2-3 2 6 n-1 6J/) 1326x~

I2

= 6 763 3262 361_, 196) 1326xi

*and -- S
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Relations for 5" are

1 '1-6 3 + '1-2 + 'i- '6 j+l '1+2 + Si+ 1 x

i 3, , .,=-)

fit if,

a0 fl6n

61 = 63 262+ 6i + 6 ) 6 Sx3 (14.T)

62 ='(65 614-63 + 0)/ 66X3

6 =( 6 + +6 6~/ 6 8x3n-2'; an-5 + n-4 + n-3 an;

and

a + +6 +26 -6 -6n) 6 x
nl n4 n-3 n-2 n-i
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Use of these equations for finding 6', 8" and 6'' leads to mild

fluctuations in 6-values after a few steps in the Z-direction. Their use had,

therefore, to be abandoned. Less accurate relations involving an error of

0 62 also yielded similar results.

v) The best method for finding the derivatives of 6 for this problem

turned out to be the use of central difference formulae6, ( a 2- -"
6i = +i1 -6i-l 1 / 2 6x1  , i = l,2,°...,(n-l) ''".

-6 =(4.8)
n..

for the first derivative, and

i (6i+l-26i + i-) / x , i-,2,...,(nl)

6 = So 2 8x , (4.9)

n  = (n-l a n 2 X

for the second derivative. The third derivative was found by applying (4.8)

to 6" calculated from (4.9). This method gave the best results for

8-distributions, and was therefore adopted.
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5. RESULTS AND DISCUSSION

The complete computer program was developed in two stages. In the first

stage the solution of eqn. (3.1) alone was attempted. This program was tested

for the vapor and tube properties for which results are available in 1211. As

pointed out in "Introduction", Stack and Merkle solve a much simplified form

of (3.1) since besides other simplifications, they use Cartesian coordinates

rather than curvilinear coordinates. In fact, we had modified our earlier

program to solve Stack and Merkle's equation (14) for the condensate film

thickness, and obtained identical results. The finite element program for the

solution of eqn. (4.1) was then developed, and the two were coupled.

In the following we present results for one vapor-tube combination for

which experimental data is also available 10,11 for comparison. Since our

analysis assumes the radius of curvature of the fluted tube to be large

compared to thp film thickness, it is not realistic to consider sinusoidal

flutes with amplitude-to-pitch ratio much above 0.2. With this in mind, we

computed results for tube 'F' of Ref. lO,ll1. This tube has seven skirts and

an I.D. = 22.9 m. Details of the actual shape of the flute, and its

dimensions are not available in [10,111, and were therefore approximated from

a blow-up of the tube 'F' photograph in 11]. The relevant fluid (R-113) and

tube (aluminum) properties are

p = 1498.343 kg/m 3  , pv= 8.58628 kg/m 3

v = 3.2067x10- 7 m2/s , = 0.01432 N/m

hfg = 145225.56 J/kg , Ts  325.5 K

kf= 0.06951 W/m-K , kv = 205 W/m-K

Tw=oo 318.5 K Tc = 318.5 K (in), 318.8 K (out)
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Lu 0.I42875 mQ--- 2.5 ) 1 ht = 0.88077 mm
100t

P= 1.61l4  mm ho  0.15543 um

where kf and kw are the thermal conductivities of the condensate and fluted

tube respectively, and ht and ho are associated with the flute shape (Fig. 3)

taken to be

f(x) ht + h cos -- (5.1)

Thus ho is half the amplitude of the flute. The fluid properties were

calculated at 322 K (mean of T. and Twoo) from known correlations 125]. These

k
values lead to

y= 0.08051 ,M , xp = 0.876487 m.

After some numerical experimentation involving different step sizes,

etc., the solution of eqn. (3.1) was started from Zo = 5x10 - 6 with 8 = 1/2

(corresponding to central differencing in X), 6X = 0.05, an initial 6Z =

5x10- 6 , and an initial X = 0.5 (see eqn. (3.5)). Further iteration for the

solution of (3.1) was terminated when

,(ik)1 ~l /Ai )m < c for all i at every k , (5.2)

where c was taken to be 10-6. As we marched downstream in the Z-direction, 8Z

was increased and the relaxation factor X had to be decreased according to

Table 1, which also gives an idea of the number of iterations before (5.2) was
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satisfied. Clearly, it takes longer to get the converged solution as we

proceed downstream in the Z-direction. Reasons for this will be apparent

soon.

Table 1 Some Parameters for Solution of (3.1)

aZ X Z # of iterations

5x10- 6  0.5 up to 0.002 - 15

8xlO- 6  0.2 up to 0.01 - 30

1.25x10- 5  0.1 up to 0.0225 50

2x10- 5  0.06 up to 0.086 90
I0.

Three divisions of the region OABCO (Fig. 3) into finite elements for the

solution of eqn. (4.l) were tried. The one selected on the basis of adequate

computational accuracy and relatively economical calculation had 154

triangular elements with 108 nodes. There were 11 nodes each on the faces AB,

BC, OC and DE (Fig. 3), and 15 nodes on the face AO.

Fig. 9 shows, to true scale, the flute shape (thick curve), and the

condensate film shape (dashed curves) at four values of Z = 0.001, 0.01, 0.03,

and 0.086. As expected the film thickens quite rapidly in the trough region
.-.-

while it remains thin over the crest. Unfortunately we are unable to present

any results for Z mach greater than 0.086 since convergence of our solution

for the film thickness (with the same tolerance e) becomes very slow. The

principal reason for this slow convergence is the thickening of the film in

the trough. Moreover, it is really futile to try to speed-up the convergence
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since our formulation for the condensate film thickness is on shaky ground as

the film thickens. The non-linear partial differential equation (2.13) comes

from a boundary-layer type analysis, i.e., we neglect all velocity gradients 6

except those in the direction normal to the fluted surface. While this is

perfectly reasonable over the initial portion of the tube height when the -.

condensate film is thin, it is increasingly questionable as the film thickens

in the trough region. It appears that for the fluid-tube combination

considered here, it is improper to analyze the film in the trough region in .

the boundary-layer-sense for Z > 0.085. It is also clear from Fig. 10, that

shows the absolute value of d(l/Ri)/dxI at various Z values, that this

derivative is negligible in the trough region as compared to its value in the

crest region. It is therefore appropriate to neglect the surface tension

effects in the trough region once the condensate film has thickened. Fig. 10

also plots the absolute value of the derivative of flute curvature with xl,

and even at the low value of Z 0.002, it is very different from the

derivative of condensate-vapor-interface-curvature with xI .

While these considerations will be undertaken in an extension of this

project, it is encouraging to note from Fig. 11 that a linear extrapolation,

on a log-log basis, of our results to date shows a fairly good comparison with

experimental data. Fig. 11 shows the heat load per half flute (in W) as a

function of Z on a log-log scale. The solid portion of the straight line is

based on computed results while the dashed portion is the extrapolation. The

lone circled point is based on the experimental data [111. We also checked

that heat transfer rates across the faces AB and OC (Fig. 3) matched within

1%. Theoretically they should be identical since faces OA Pnd BC are

insulated.

35 ~

.. . . . . . . . ... -. .. . °.



6. SUGGESTIONS FOR FURTHER WORK

Besides the deficiencies mentioned above, our present analysis also

neglects the transverse curvature term, i.e., it assumes the film thickness to

be small compared to the radius of curvature of the flute. The analysis is

therefore restricted, in its present form, to flutes having a small amplitude

to pitch ratio. This is, however, a minor drawback since it seems

(analytically at least) that we can overcome this deficiency relatively

easily. Its implementation in the computer code is yet to be done.

Another assumption, common to all analyses to date, and far more serious

in terms of correct modelling of the practical applications, is the complete

neglect of vapor shear on the interface. Our code does have the provision for

studying its effect but since we have not analyzed the vapor dynamics yet, we

simply take the vapor shear to be zero at present. One should also consider

the coolant dynamics for a complete solution but all this will undoubtedly be

very demanding.

6-,
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APPENDIX A

CURVATURE OF CONDENSATE-VAPOR INTERFACE
AND ITS VARIATION ALONG FLUTE SHAPE

Equation (2.13) for the determination of condensate film thickness

6(x ,z) involves the value of pressure gradient dp/dx which, in turn,
1 1

depends upon d(i/R )/dx, as is clear from (2.15). We present below somei 1

relations for calculation of this quantity.

The basic terminology is present in Fig. 3, wherein, f(x) denotes the

flute shape and fi(x) the condensate-vapor interface. The position vector to
4.

a point on the flute is rw, and that to a point on the condensate-vapor
+

interface is ri, such that

ri- rw= n 6  , (A.1)
4

where nw is the unit normal to the flute as shown in Fig. 3. We also let xI

be the curvilinear coordinate along the condensate-vapor interface.

Then by definition

32ri
-_ a (A.2)

Ri ax

Now ri = (x, fi), (A.3)

f2 1/2
and Xi = X(l + fi ) dc

u '(A.4)

where prime denotes differentiation with x. From equation (A.4), we get

d'2 /2 "'"= ( + fi )(A5)
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From (A.3) then

dri dri dx

dXj d dxi

-(112
r'2 ) (,f)

Thus d2r~

2 2-2 (-r± i) (A.6)
dxi 1

From equation (A.2) then

R ~~" (A.7)
i. (+r 1i 2)-

And

dd dx -x

dxl Ri dx Rj dx1

sgn(rf) ,,, 1

/2 fi 3 11-r2  (A.8)

dx
'2 1/2

since dx =(1+f in analogy with (A-5). (A.9)
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I.

While equation (A.8) seems to be in a convenient form for calculation of

d(i/R i)/dx it is not practical since fi is known only at a discrete set of

unequally-spaced x-values. Thus, finding fi', fi and fi"' is troublesome, to

say the least. Several attempts to use equation (A.8) had to be abandoned for

this reason (see Sec. 4.1 for details).

Another relation for the curvature of the condensate-vapor interface

comes from use of equation (A.1), and the fact that the unit normal vector n.

is given by

+ df dx-
w dxI  dxI

!- _z/2 i"

- (l+f'2 ) (-f', 1) . (A.1O)

Thus, from (A.1)

i '2f + )since rw = (x,f).=1+ 12 /2 '1 f 1/2 ' 
.

drid-i6'f' - f , f'+ ' - f' :2)

Therefore, d' I - f/2 , (A.11)
(1+f 2)  (1+f 2).

where E' 36/3x but f'- df/dx, etc.. The reason for keeping 36/3x in place1 1 '-

of aS/3x is that solution of equation (2.13) leads to values of 8 at equidis-

tant x -values but at non-equidistant x-values. It is therefore convenient

to find numerically derivatives of 6 with respect to x
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Carrying on further, we can find d2rj/dx2 from (A.l1), and then use the

relation

E+' '2) + y7  1/2

*j,12r 1her Tir = " -I
2A12

= 2 2
= lf .. /T3  ~,113 ) ±"

(1+f +'2 2) y72+ 8f) /

whr Y,~ 2)fT =lf

Y2 '

1+f)

42/
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It is interesting to note that many theoretical analyses that claim to

determine the surface tension effect based upon the actual shape of the

condensate-vapor interface invariably use

/2. 6 (A.l14)

*for the curvature of the interface. This follows from the correct relation

(A-13) if only the first terms in both the numerator and the denominator are

retained. However, even for small 6, there is hardly any justification for

*dropping all other terms in (A.13). The difference between the actual

* d(l/Ri)/dx and that obtained from (A.14~) gets further amplified due to
1

differentiation. I

For convenience let us write

1= 2 4/2N
Ri D D

where the expressions for N and D are clear from equation (A.13). It is then

easy to get

d 1 g(N 6 fit ( 6Y + 65' '+ 8YY, + 3, +Y1
dx Rj 3/2 5

1 D

+ 62(y+ 2y1' + 6'fy3+ 8(2y 2+ y4')} + 62 y2 ' '2 1Y'

3~ {6(2y6  + 8  . (1 + 6'2 )y 6 ' + 82 yT' + 8y 8 '}, (A-15)

2RiD 68" +P'T8L

.........................................3..



Where 1 d 1 = " ( + ' ) /

yl dxl

dy
Y2 3f#2 2f f ! "2

Y2 dx 7/L+f'

1Y (1±2) f2

3 dxl 1= ~ '2 -2f±'

14 (3f"2 2)f''

-X 1+f'2 -2 3 ±f'
.(1+f' 2) ,f2

dy 
5

5 d
1

dy6

d7  2f" fi, 2f" f'1

dx 1  2 1+f

and Ny ±"±'

1 1+f 1+f
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Equation (A.15) is quite complicated but as mentioned in the discussion on

3 3
eqn. (2.13), it contains 93 /ax1 . It is therefore essential to determine the

condensate film thickness as accurately as possible. Otherwise, errors in

finding the third derivative of 6 w.y.t. x, numerically will be excessive.

Due to these numerical difficulties, it was found that use of eqn. (A.15) to

find d(l/Ri)/dxI resulted in mild oscillations in 6-values after a few steps

in the Z-direction. Several methods (at least five) were used to find

6-derivatives w.r.t. x, but all resulted in oscillatory 6-values; the least

oscillations resulted from the use of central-difference formulae.

In order to overcome this difficulty, another relation for 1/Ri and its

derivative w.r.t. x, was developed. This relation, based on eqns. (A.2) and

(A.1), is

1 = 2( w *+ :::

Ri 2

l 
-',_+

-- + &- + --- x nw  -- (A.16) '-
ax x12 ax 12 ax I x1  ax 12 '-

. 4 -i -

where 3/3xi has been approximated by 3/3x,. Noting that rw = (x,f), and n.

is given by eqn. (A.10), we get from (A.16), after some algebra, that

Ri=[(a 1 + ct8+a8 + Q4611)2 + +26+36+es)2]12 (.)i = +, 8") (A.17) -
('5. 01+°'6 + %02 I*s + '3 '  ,2 zz
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where 6 Wax f df/dx, etc., and

e -20 ,

ff )a3 = -28

L -2

f ((1+f" f,,,
2 = ,S2'

82 = -21 01 8-f"

03 2a
ad = (1+f'2 ) - /2

From equation (A.17) it follows that

2 i a2 a +Qf'+ a1S"

+O 026 +36 + 0 4 6 )(-Q2 + 02'6 + 3802' + 3 a,6" + 046 S ill (A.18)
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where

a2 dc2  1 f(4f v2 + 13f'If"' It I 28f'2f"3
a d xl 3it ) 1 + f'2 (iir 2

and

2 fa r+ f"(20 a -a8) 8 2,,,0
2 ~ - 2 4 2 1 1 1 4

3 3
Equation (A.18) also contains 3 6/3x ,but unlike equation (A.15), it yields

*stable (non-oscillatory) values of 8 upon integration of eqn.(2.13). This

* relation was therefore used in the final computer code.

k
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APPENDIX B

Nonlinear Equations Solution by Newton-Raphson Method

Consider the set of equations

[K!{x} - {R}

n
or Z kij(x, x xn)xj Ri(x 2, .. , xn) , i = 1, 2, n.

where kij and Ri are non-linear functions of x , x , .. , xn.
1 2

n
Let Fi(x, x ,.., xn ) = Z ( .. , xn)Xj -i 2', .. , Xn),

i j=1 1

i 1 1, 2, .., n.

th
So Fi is the residue in the i eqn. For solution Fi = 0, i = 1, 2, , n.

Expanding Fi by Taylor series, we write

Fi(x + Ax , X + Ax , .., Xn  Axn)
1 1 2 2'

= Fi(x, x, .. , xn ) + (x, x, ..,x )AxJ +1 2 J~ x 1 2'
lxJ n

i = 1, 2, .., n.

Neglecting all higher-order terms and setting leftside = 0 for a solution,

we get

* n 3Fi (x , x , .. , xn)Axj = Fi(x , x ... , xn) , i = 1, 2, .. , n.
Jul a x 2 1 2.'--

4

48

• - .- .' . . -. -. ..- .- .- - .. . -- -- A -. . .. . .. . . • -.-.- .... .. ..-. . . . . . .. .. -*. .* - . . . ... ,d.-_ . .. -' -.,,



Thus Newton-Raphson iteration algorithm can be written as

m 1~ m
rjlm{Ax} m  = -{F}

m+l m m+l
{x} {x} + {Ax)

where m denotes mth iteration & rJm is the system Jacobian at the mth itera-

tion.

The elements of IJI m are
M!

m = Fi m:! '

1X-j

,
If it is too time consuming to compute [J] at every iteration, find [JI once

and use it until convergence, which will be slow, however.

4.

&:-::

; - .
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(a) Condenser arrangement
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(b) Cross section of vertical condenser.

Fig. 1. Vertical Submarine Condenser
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Fig. 4 Control Volume in the Condensate Film.
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FIG. 5 Finite Difference Grid.
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